如图,点C为线段BD上的点,分别以BC,CD为边作等边三角形ABC和等边三角形ECD,连接BE,交A
来源:学生作业帮助网 编辑:作业帮 时间:2024/10/11 16:03:04
已知线段BD上有一点C,分别以BC,CD为边做等边三角形ABC和等边三角形ECD,连接BE交AC于点M,连接AD交CE于点N,连接MN求证CM=CN已知线段BD上有一点C,分别以BC,CD为边做等边三
C是线段BD上一点,分别以BC和CD为一边,在BD的同一侧作等边三角形ABC和等边三角形ECD,AD交CE于F,BE交AC于G,求证三角形CFG是等边三角形.C是线段BD上一点,分别以BC和CD为一边
如图,点C为线段BD上的一点,分别以BC、CD为边长向BD同侧作等边三角形ABC与等边三角形ECD,连接AD与BE,且相交于点N,请你说明△ACD≌△BCE,并求出角BND的度数如图,点C为线段BD上
如图,C是线段BD上一点,分别以BC、CD为边作等边三角形ABC和CDE,连接AD、BE.求证:AD=BE.如图,C是线段BD上一点,分别以BC、CD为边作等边三角形ABC和CDE,连接AD、BE.求
【如图】在线段BD上取一点C,以BC、CD为边分别作△ABC和正△ECD如图,在线段BD上取一点C,以BC、CD为边分别作△ABC和正△ECD,连结AD交EC于点Q,连结BE交AC于点P,交AD于点F
如图,C是线段BD上一点,分别以BC,CD为边做等边三角形ABC和CDE,连接AD,BE,求证:AD=BE如图,C是线段BD上一点,分别以BC,CD为边做等边三角形ABC和CDE,连接AD,BE,求证
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:1.△APC≌△BQC2.△
几何的.已知△ABC是边长为5的等边三角形已知△ABC是边长为5的等边三角形.如图①,若P是边BC上一点,过点C、P分别作AB、AC的平行线,两线交于点Q,连接BQ、AP的延长线交BQ于D,试问:线段
如图,在线段BD上取一点C(BC≠CD),以BC、CD为边分别作正ΔABC与正ΔECD,连接AD交EC于点Q,连接BE交AC于点P,连接PQ,AD与BE交于点F.问1:图中哪些三角形可以通过旋转得到?
已知c是线段ab上的一点,分别以bc,ac为边作等边三角形acd和三角形cbe.若ae交cd于点m,bd交ce于点n,求证:bd=ae,mn平行ab已知c是线段ab上的一点,分别以bc,ac为边作等边
如图,C为线段AE上一动点,(不与A,E重合),在AE同侧分别作等边三角形ABC和CDE.AD与BC交于点P,BE与CD交于Q,l连接PQ,连接OC【图片上没有连==】证明:OC平分∠AOE如果证明不
在线段BD上取一点C,以BC,CD为边分别作正三角形ABC和正三角形ECD,连结AD交EC于点Q,连结BE交AC于点P,交A交AD于点F。(1)通过旋转变换,图中可得到哪些全等三角形?(2)角BFD是
如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDEAD与BC交于点P,BE与CD交于点Q,连接PQ求证:(1)△ACD≌△BCE.(2)△PCQ为等边三角形.
如图,C为线段AE上一动点,(不与A,E重合),在AE同侧分别作等边三角形ABC和CDE.在AE同侧分别为正三角形ABC和正三角形CDE,AD于BE交于点O,AD与BC交于点P,BE与CD交于Q,l连
线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.(1)找出图中的几组全等三角形,又有那几种相等的线段?(2)取AE的中点M、B
如图,BD是直径,过圆O上一点A作圆O切线交DB延长线于P,过点B作BC平行PA交圆O于C,连接AB、AC1.证AB=Ac2.若PA=10,PB=5,求圆O半径和AC长如图,在等边三角形ABC中,线段
如图点c是线段ab上的任意一点,分别以ac,bc为边在直线ab的同侧作等边三角形acd和等边三角形bce,.如图点c是线段ab上的任意一点,分别以ac,bc为边在直线ab的同侧作等边三角形acd和等边
求证已知C点在线段BE上运动,分别以BC,EC为边各做一个等边三角形,△ABC和△DCE,连接AE,BD,分别交CD于点Q,交AC于点P,连接PQ,求证:PQ//BE求证 已知C点在线段BE
已知:如图,点B在线段AC上,以AB、BC为边在AC同侧作等边三角形ABD和等边三角形BCE,连接AE、CD相交于O,AE与BD交于G,CD与BE交于H.求证:(1)OA平分∠BOD;(2)OA=OD
已知:如图,点B在线段AC上,以AB、BC为边在AC同侧作等边三角形ABD和等边三角形BCE,连接AE、CD相交于O,AE与BD交于G,CD与BE交于H.求证:(1)OA平分∠BOD;(2)OA=OD