紫外线的应用 紫外线灭菌作用,短波紫外线对微生物的破坏力

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 19:56:45
紫外线的应用 紫外线灭菌作用,短波紫外线对微生物的破坏力

紫外线的应用 紫外线灭菌作用,短波紫外线对微生物的破坏力
紫外线的应用 紫外线灭菌作用,短波紫外线对微生物的破坏力

紫外线的应用 紫外线灭菌作用,短波紫外线对微生物的破坏力
好吧,这个问题我表示我不知道~

紫外线的应用在最后面 因为最长。
紫外线灭菌作用
  紫外线杀菌消毒是利用适当波长的紫外线能够破坏微生物机体细胞中的DNA(脱氧核糖核酸)或RNA(核糖核酸)的分子结构,造成生长性细胞死亡和(或)再生性细胞死亡,达到杀菌消毒的效果。紫外线消毒技术是基于现代防疫学、医学和光动力学的基础上,利用特殊设计的高效率、高强度和长寿命的UVC波段紫外光照射流水,将水中各种细菌、病毒、寄生虫、水...

全部展开

紫外线的应用在最后面 因为最长。
紫外线灭菌作用
  紫外线杀菌消毒是利用适当波长的紫外线能够破坏微生物机体细胞中的DNA(脱氧核糖核酸)或RNA(核糖核酸)的分子结构,造成生长性细胞死亡和(或)再生性细胞死亡,达到杀菌消毒的效果。紫外线消毒技术是基于现代防疫学、医学和光动力学的基础上,利用特殊设计的高效率、高强度和长寿命的UVC波段紫外光照射流水,将水中各种细菌、病毒、寄生虫、水藻以及其他病原体直接杀死,达到消毒的目的。
  
短波紫外线对微生物的破坏力(是紫外线灭菌的一个表现)

  短波紫外线对微生物的破坏力极强,当该波段的紫外线照射细菌 体后, 细胞的核蛋白和核糖核酸(DNA)强烈地吸收该波段的能量, 它们之间的链被打开断裂, 从而使细菌死亡。如,用紫外线汞灯或金属卤化物灯对空气和食品灭菌

紫外线的应用
荧光效应:由于紫外线光量子具有较大的能量,所以当紫外线照射到很多物质上时使分子受激而发射荧光。这些物质辐射荧光的现象就称为紫外线的荧光效应。紫外线的荧光效应是一种光致发光。当紫外线照射到某些物质时,这些物质有选择地吸收后,发射出不同波长和不同强度的可见光来。当紫外线停止照射后,荧光也随之消失。实际上,当紫外线照射到荧光物质上时.会发生3种情况:一部分紫外线被反射,一部分被荧光物质吸收,另一部分透射出去。其中,只有被荧光物质吸收的这部分紫外线才对发光起作用:当荧光物质吸收了紫外线后,内部的分子会发生能量状态的变化,在不同能级间跃迁,发射出荧光:
荧光探伤,在机械制造工业中,以前对零件的探伤常采用超声波X光等方法,但都不如用荧光法简便。荧光探伤就是把被检测的零件在荧光物质的溶液中浸泡一定时间,取出后用毛刷把零件表面的荧光物质刷掉。由于浸入零件裂缝中的荧光物质不可能被刷掉,经过这样处理的零件放入暗室里,用不透明玻壳的紫外线高压汞灯照射零件表面,残存在裂缝内部的荧光物质将发射出荧光来,这样就可以找出有伤痕的零件。
光舞台特技:舞台特技的做法是用荧光粉涂画成相应的图形,然后用相应的紫外线光源照射其画面,在黑暗的舞台上呈现出各种夜景,如星辰、月亮、灯光、城市夜景和码头灯光等等。使观众有身临其境的感觉,舞台效果逼真。
其他应用:在刑事侦察上用荧光分析血清蛋白和血浆酶,可以查出人种、性别、年龄等重要线索,尸体内残存的一些毒品、药品用荧光分析可查出品种和含量,根据伤口也可查出所用凶器;另外,借助荧光分析可以辨别文件、纸币、证件、邮票历史文物和书画的真伪。
光电效应:当紫外线照射到金属的表面时,金属内部的自由电子会逸出金属表面,这种紫外线的光致电子发射构成了紫外线光电效应的一部分。紫外线的光电效应是光能转换为电能的一种方式。光电效应分为外光电效应、内光电效应和光生伏特效应。紫外线照射能产生光电效应的材料除了金属、半导体外,还有某些气体和一些化学物质,人与动植物被照射后也能产生光电效应。人体的光电效应在人体内产生许多活性因子。因为生物体内每一个细胞都是一个微电池,在细胞内外有一定的电势差。当紫外线照射细胞后,产生光电效应,使细胞变为活性因子。这些活性因子是治疗某些疾病的重要因素。而动植物的光电效应,更直接影响到动植物的生长过程。气体的光电效应的主要应用是制造“空气罐头”。所谓“空气罐头”就是气体的负离子。当短波紫外线照射到空气中的某些气体分子或原子时,使气体分子或原子中的电子逸出,逸出后的电子附着在其他气体分子上,使气体分子变为负离子。负离子能使人健康长寿,还能医治一些疾病。被称为“空气维生素”。

光化学效应:紫外线照射某些物质时,能产生光化学反应。波长在200—400纳米的紫外线所具有的能量(3~6eV)正是许多物质(化学键能也在3~6eV的范围内)吸收后产生光化学反应所需的能量。尤其是短波紫外线的光子能量较大,对光化学反应特别有效,能直接引起一些物质的化合和分解。
印刷制版和晒版。目前新工艺采用重氮盐感光性树脂制成PS版,能弥补重铬酸盐感光版的许多不足。重氮盐PS版感光过程其实质是一个紫外线光化学效应过程:当重氮基团受到紫外线照射后,感光剂迅速分解并放出氮气。分子的其他部分进行结构重排而生成易溶于碱水的羧酸衍生物。根据曝光后版面溶解性的不同,就很容易地把紫外线照射的非图像部分经过显影而除掉。版面上仅留下有图像的部分,构成印刷版材。
处理公害。发霉的花生、大豆、玉米及其加工制品含有大量的致癌物质——黄曲霉菌,对人体有害。而紫外线对黄曲霉素破坏力很强,尤其是波长为365纳米的紫外线使黄曲霉素产生光化学反应,最后变成无致癌性。
同位素分离。所谓同位素分离,是从天然的同位素混合物中分离出某种纯同位素来,或者把其中某一种同位素的浓度提高。同一种元素的同位素,其物理化学性质很相似,这就造成了分离同位素的困难。过去分离同位素是利用同位素质量不同来实现的,例如用气体的扩散法和离心法来分离同位素。但这些方法成本高,效率低。用紫外线光量子的能量可只激发同位素当中的一种而其他不被激发,然后用物理或化学的方法把它同未被激发的同位素分离开来。用紫外线分离同位素的方法成本低,效率高,可节省很多投资。

生物效应:当紫外线照射人体或生物体后,使人体或生物体发生生理变化。不同波长的紫外线的生理作用不同。根据紫外线对生物作用的性质,在医疗卫生上把紫外线划分为不同的波段(见图1):黑斑紫外线(曲线A)在320—400纳米波段;红斑紫外线或保健射线(曲线B)在280~320纳米波段;灭菌紫外线(曲线C)在200~320纳米波段;致臭氧紫外线(曲线D)在180~200纳米波段
紫外线的致黑斑作用:波长在320~400纳米的紫外线又叫长波紫外线。该波段的紫外线生物作用较弱,但它对人体照射后使皮肤变黑,皮肤有明显的色素沉着作用,这就是紫外线的黑斑作用。该波段的紫外线可强烈地刺激皮肤,使皮肤新陈代谢加快、皮肤生长力加强和使皮肤加厚。A波紫外线是治疗皮肤病的重要波段,像牛皮癣、白癜风等疾病。
紫外线灭菌作用,短波紫外线对微生物的破坏力极强,当该波段的紫外线照射细菌体后,细胞的核蛋白和核糖核酸(DNA)强烈地吸收该波段的能量,它们之间的链被打开断裂,从而使细菌死亡。如,用紫外线汞灯或金属卤化物灯对空气和食品灭菌。
紫外线对人体的保健作用。波长在280—320纳米的月波紫外线照射人体后,能引起皮肤肌体的光化学过程和光电反应,使皮肤产生许多活性物质,从而起到健康保健的作用。目前采用紫外线照射调节高级神经的功能、改善睡眠、降低血压。经常接受紫外线照射能加强白血球的吞噬能力,增强人的免疫功能。
紫外线生物效应的另一应用是生物诱变育种。决定生物传宗接代的物质是脱氧核糖核酸。微生物的DNA吸收光谱正是在200~300纳米之间,当微生物DNA吸收紫外线之后,结构将发生很大变化,将引起微生物的遗传性的改变。用这种方法可以在短期内使微生物的特性大幅度地变异。

收起